{"id":21443,"date":"2019-03-13T09:41:46","date_gmt":"2019-03-13T01:41:46","guid":{"rendered":"https:\/\/www.kuaiqikan.com\/?p=21443"},"modified":"2019-03-13T09:41:46","modified_gmt":"2019-03-13T01:41:46","slug":"hao-sci-lun-wen-de-ji-dian-jing-yan-fen-xiang","status":"publish","type":"post","link":"https:\/\/www.kuaiqikan.com\/hao-sci-lun-wen-de-ji-dian-jing-yan-fen-xiang\/","title":{"rendered":"\u597dSCI\u8bba\u6587\u7684\u51e0\u70b9\u7ecf\u9a8c\u5206\u4eab"},"content":{"rendered":"

\u4e00\u3001\u7814\u7a76\u7ed3\u679c\u6574\u7406<\/strong><\/p>\n

1. \u00a0 \u00a0 \u00a0\u6750\u6599\u4e0e\u65b9\u6cd5<\/p>\n

\u5e94\u8be5\u5c5e\u4e8e\u8bba\u6587\u4e2d\u8f83\u5bb9\u6613\u5199\u7684\u90e8\u5206\u3002\u4f46\u5bf9\u4e8e\u5199\u60ef\u4e2d\u6587\u8bba\u6587\u7684\u4f5c\u8005\uff08\u4e2d\u6587\u8bba\u6587\u65b9\u6cd5\u90e8\u5206\u5e38\u5e38\u65e0\u9700\u5b8c\u6574\u53e5\u5b50\u6216\u4e09\u8a00\u4e24\u8bed\uff0c\u65e0\u9700\u53c2\u8003\u6587\u732e\u6216\u5bf9\u65b9\u6cd5\u7684\u8bba\u8bc1\uff09\uff0c\u8fd9\u90e8\u5206\u4e5f\u662f\u5ba1\u7a3f\u4eba\u6700\u5bb9\u6613\u63d0\u51fa\u95ee\u9898\u7684\u90e8\u5206\u3002\u5728\u5b9e\u9a8c\u8fc7\u7a0b\u4e2d\u79ef\u7d2f\u7684\u65b9\u6cd5\u6b65\u9aa4\u53ef\u4ee5\u653e\u5728\u8fd9\u90e8\u5206\uff0c\u4f46\u5fc5\u987b\u4ee5\u5b8c\u6574\u53e5\u5b50\u7684\u5f62\u5f0f\u7b80\u6d01\u3001\u51c6\u786e\u63cf\u8ff0\uff0c\u800c\u4e0d\u662f\u8bb0\u6d41\u6c34\u8d26\u3002<\/p>\n

\u8981\u660e\u786e\u63d0\u4f9b\u6750\u6599\u5305\u62ec\u8bd5\u5242\u3001\u7ec6\u80de\u3001\u52a8\u7269\u7684\u6765\u6e90\u3002\u65b9\u6cd5\u7684\u63cf\u8ff0\u6700\u597d\u4e3a\u4e0b\u9762\u7ed3\u679c\u7684\u63cf\u8ff0\u6253\u4e0b\u4f0f\u7b14\uff0c\u4ee5\u4fdd\u6301\u8bba\u6587\u7684\u4e00\u81f4\u6027\u5e76\u65b9\u4fbf\u8bfb\u8005\u9605\u8bfb\u3002<\/p>\n

\u5c3d\u91cf\u91c7\u7528\u5927\u6807\u9898(Headings)\u548c\u5c0f\u6807\u9898(Subheadings)\u9010\u6b65\u63cf\u8ff0\u3002\u6709\u4e9b\u6210\u719f\u7684\u65b9\u6cd5\uff0c\u7b80\u8ff0\u5373\u53ef\uff0c\u5e76\u5f15\u7528\u76f8\u5173\u53c2\u8003\u6587\u732e\u3002\u4f46\u5982\u679c\u662f\u81ea\u521b\u65b9\u6cd5\uff0c\u5219\u5e94\u8be6\u7ec6\u63cf\u8ff0\uff0c\u5c24\u5176\u63d0\u51fa\u6539\u8fdb\u70b9\u548c\u6ce8\u610f\u70b9\uff0c\u4ee5\u8868\u660e\u5176\u521b\u65b0\u6027\u3002<\/p>\n

2. \u00a0 \u00a0 \u00a0\u7ed3\u679c<\/p>\n

\u7ed3\u679c\u7684\u63cf\u8ff0\u987a\u5e8f\u6700\u597d\u4e0e\u65b9\u6cd5\u7684\u4e00\u81f4\u3002\u5b9c\u91c7\u7528\u76f8\u5e94\u7684\u5927\u6807\u9898(Headings)\u9010\u6b65\u63cf\u8ff0\u3002\u6240\u6709\u6709\u5173\u7684\u8bd5\u9a8c\u6216\u89c2\u5bdf\u6307\u6807\u5e94\u4ee5\u9002\u5f53\u7684\u5f62\u5f0f\u8868\u8fbe\uff0c\u4f46\u5e94\u8be5\u9ad8\u5ea6\u7cbe\u7ec3\u3002\u4fe1\u606f\u91cf\u5927\u7684\u548c\/\u6216\u975e\u91cd\u8981\u7ed3\u679c\u53ef\u4ee5\u603b\u7ed3\u5728\u8868\u4e2d\uff0c\u91cd\u8981\u7ed3\u679c\u6216\u4fe1\u606f\u91cf\u5c0f\u7684\u7ed3\u679c\u53ef\u7528\u56fe\u8868\u793a\u3002<\/p>\n

\u5177\u6982\u62ec\u6027\u7684\u7ed3\u679c\u8868\u8ff0\u6216\u5bf9\u6709\u7edf\u8ba1\u5b66\u610f\u4e49\u6216\u751f\u7269\u4e34\u5e8a\u91cd\u5927\u610f\u4e49\u7684\u7ed3\u679c\u8868\u8ff0\u5e94\u4f53\u73b0\u5728\u6b63\u6587\u4e2d\u3002\u76f8\u5e94\u7684\u56fe\u8868\u6700\u597d\u653e\u5728\u8fd9\u4e9b\u7ed3\u679c\u8868\u8ff0\u53e5\u672b\u7684\u62ec\u53f7\u4e2d\u3002<\/p>\n

\u4e8c\u3001\u6570\u636e\u7edf\u8ba1\u5206\u6790<\/strong><\/p>\n

\u7531\u4e8e\u7edf\u8ba1\u5206\u6790\u6d89\u53ca\u5230\u7684\u77e5\u8bc6\u79cd\u7c7b\u8fc7\u4e8e\u5bbd\u6cdb\uff0c\u73b0\u7ed9\u5927\u5bb6\u4ecb\u7ecd\u6211\u4ee5\u524d\u89e3\u7b54\u8fc7\u7684\u95ee\u9898\uff0c\u5e0c\u671b\u80fd\u5bf9\u5927\u5bb6\u6709\u6240\u542f\u53d1\u3002<\/p>\n

\u95ee\u98981<\/strong>\uff1a\u6587\u7ae0\u6295Proteomics Clinical Applications\u88ab\u62d2\uff0c\u5386\u65f62\u4e2a\u6708\u7684review\u540e\uff0c\u6628\u5929\u6536\u5230\u90ae\u4ef6Rejected\u3002\u8fd9\u4e2a\u6742\u5fd707\u5e74\u624d\u4eceproteomics\u5206\u51fa\uff0c\u73b0\u5728\u8fd8\u6ca1\u6709IF\uff0cSCI-E\u6536\u5f55\u3002<\/p>\n

\u62d2\u7a3f\u610f\u89c1\u4e3b\u8981\u662f\u5b9e\u9a8c\u8bbe\u8ba1\u3001\u7edf\u8ba1\u95ee\u9898\uff0c\u6574\u7406\u5982\u4e0b\uff1a<\/p>\n

\u6211\u505aABC\u4e09\u7ec4\u7684\u6bd4\u8f83\u86cb\u767d\u8d28\u5b66\uff0c\u4e24\u4e24\u95f4\u6bd4\u8f83\u8d85\u8fc71.5\u500d\u7684\u8868\u8fbe\u70b9D\u9009\u51fa\uff0c\u9176\u89e3\uff0cMS\u3002WB,RT\u9a8c\u8bc1\u76ee\u7684\u86cb\u767d\u3002<\/p>\n

\u5ba1\u7a3f\u4eba\u610f\u89c1<\/strong><\/em>\uff1a<\/p>\n

(1) \u00a0 \u00a0\u4e24\u4e24\u95f4\u6bd4\u8f83\uff0ct\u68c0\u9a8c\u5df2\u6709\u7cbe\u786e\u7684p\u503c\uff0c\u4e3a\u4f55\u8981\u9009\u75281.5\u500d\uff1f\u65e2\u7136\u8981\u9009\u62e9D\u70b9\uff0c\u5c31\u4e0d\u5e94\u8be5\u7528\u4e24\u4e24\u95f4\u6bd4\u8f83\uff0c\u800c\u5e94\u8be5\u9009\u7528\u65b9\u5dee\u5206\u6790\u3002<\/p>\n

\u6211\u7684\u56de\u590d\uff1a\u5982\u679c\u4e0d\u9009\u75281.5\u500d\uff0c\u53ea\u7528p\u503c\u786e\u5b9a\uff0c\u90a3\u70b9\u66f4\u52a0\u591a\u5f97\u4e0d\u5f97\u4e86\uff0c\u9176\u89e3\u3001ms\u90fd\u66f4\u8d39\u94b1\uff0c\u6240\u4ee5\u5f53\u65f6\u5c31\u5728\u57fa\u7840\u4e0a\u518d\u7b5b\u9009\uff0c\u5c31\u9009\u62e9\u4e86\u8868\u8fbe1.5\u500d\u3002\u81f3\u4e8e\u7528\u9009\u62e9D\u70b9\u6ca1\u7528\u65b9\u5dee\u5206\u6790\uff0c\u5982\u4f55\u89e3\uff1f<\/p>\n

(2) \u00a0 \u00a0WB,RT\u4e3a\u4f55\u4e0d\u7528\u65b9\u5dee\u5206\u6790\uff1f<\/p>\n

\u6211\u7684\u56de\u590d\uff1aWB,RT\u90fd\u662f\u7528\u5b9a\u91cf\u7684\uff0c\u6bd4\u8f83\u7528\u7684\u4e5f\u662f\u4e24\u7ec4\u95f4\u7684t\u68c0\u9a8c\u3002\u4f46\u5728\u7edf\u8ba1\u63cf\u8ff0(methods and materials )\u7684\u65f6\u5019\u6211\u76f4\u63a5copy\u4e86\u4ee5\u524d\u6587\u7ae0\u91cc\u9762\u7684\u63cf\u8ff0\uff0c\u8bf4\u8ba1\u6570\u8d44\u6599\u7528\u5361\u65b9\u68c0\u9a8c\uff1b\u6ca1\u6709\u63d0\u5230\u8ba1\u91cf\u8d44\u6599\uff0c\u4e5f\u6ca1\u6709\u63d0\u5230\u7528\u65b9\u7a0b\u5206\u6790\u3002\u8fd9\u8be5\u5982\u4f55\u89e3\u91ca\uff1f<\/p>\n

\u9ebb\u70e6\u590f\u6559\u6388\u7ed9\u4e0b\u610f\u89c1\uff0c\u662f\u5426\u53ef\u4ee5\u5927\u4fee\u540e\u518d\u6295\uff1f<\/p>\n

\u590f\u6559\u6388<\/strong><\/em>\uff1a<\/p>\n

1) Normally,the comparison for proteomics is between two groups.<\/p>\n

I believe that you are trying to comparethree progressive pathologies such as normal, pre-cancerous and cancer in your study. If so, I am not sure if this is a good approach.<\/p>\n

2) Although I am not familiar withproteomics, I did review some papers in proteomics. The so-called”differentially expression spots or proteins” are usually defined by”two-fold difference” or even “1.5-fold difference” (if you have a reason or reference to support you), but not defined by statistical analysis.<\/p>\n

3) If you really want to use statistical analysis for three groups, you should use One-way ANOVA, not a simple T-testwhich is for two independent samples (groups).<\/p>\n

\u95ee\u98982<\/strong>\uff1a\u751f\u5b58\u671f\u5206\u6790\uff0c\u4e00\u7ec4\u75c5\u4f8b\u6570\u4e25\u91cd\u5c11\u4e8e\u5176\u4ed6\u7ec4\u75c5\u4f8b\u6570\u65f6\u8be5\u600e\u4e48\u7edf\u8ba1\uff1f<\/p>\n

\u6211\u5728\u7edf\u8ba1\u4e00\u4e2a\u5173\u4e8e\u4e09\u79cd\u4e0d\u540c\u57fa\u56e0\u578b\u4e0e\u60a3\u8005\u751f\u5b58\u671f\u7684\u95ee\u9898\uff0c\u4e09\u4e2a\u57fa\u56e0\u578b\u5206\u522b\u662f\u6b63\u5e38\uff0c\u6742\u5408\u5b50\u548c\u5b8c\u5168\u7a81\u53d8\u578b\uff0c\u6240\u7528\u7684\u53d7\u8bd5\u4eba\u7fa4\u5b8c\u5168\u662f\u60a3\u8005\uff0c\u5728\u6211\u7684\u75c5\u4f8b\u4e2d\u53d1\u73b0\uff0c\u5b8c\u5168\u662f\u6b63\u5e38\u7684\u57fa\u56e0\u578b\u7684\u4eba\u6570\u53ea\u5728\u5341\u4f8b\u591a\uff0c\u800c\u7a81\u53d8\u578b\u7684\u603b\u548c\u8fbe\u5230\u4e86150\u591a\u4f8b\uff0c\u6240\u4ee5\u5e94\u8be5\u8bf4\u60a3\u8005\u7684\u5206\u578b\u6bd4\u8f83\u504f\uff0c\u800c\u8fd9\u4e2a\u662f\u60a3\u8005\u7684\u75c5\u4f8b\uff0c\u800c\u4e0d\u662f\u6b63\u5e38\u4eba\u7684\uff0c\u6240\u4ee5\u51fa\u73b0\u504f\u7684\u73b0\u8c61\u662f\u5f88\u6b63\u5e38\u7684\u3002<\/p>\n

\u6742\u5408\u5b50\u548c\u5b8c\u5168\u7a81\u53d8\u578b\u7684\u751f\u5b58\u671f\u7684\u6bd4\u8f83\uff0c\u6211\u505aK-M\u5206\u6790\u7684\u65f6\u5019\uff0cP\u503c\u4e3a0.07\uff0c\u4f46\u770b\u66f2\u7ebf\u5206\u7684\u6bd4\u6211\u505a\u51faP\u503c0.03\u7684\u8fd8\u5f00\uff0c\u660e\u663e\u770b\u51fa\u662f\u57fa\u56e0\u6b63\u5e38\u7684\u60a3\u8005\u4eba\u6570\u7279\u522b\u5c11\u3002\u6211\u6000\u7591\u53ef\u80fd\u4f1a\u7531\u4e8e\u8fd9\u4e2a\u9020\u6210\u6570\u636e\u504f\u5dee\u3002<\/p>\n

\u542c\u8bf4\u6709\u4e00\u79cd\u7edf\u8ba1\u65b9\u6cd5\u53ef\u4ee5\u505a\u8fd9\u79cd\u4e00\u7ec4\u60a3\u8005\u4eba\u6570\u7279\u522b\u5c11\u7684\u751f\u5b58\u671f\uff0c\u53ef\u662f\u6211\u4e0d\u4f1a\uff0c\u8fd9\u8be5\u600e\u4e48\u529e\uff0c\u5b9e\u5728\u662f\u5df2\u7ecf\u975e\u5e38\u63a5\u8fd10.05\u4e86\uff0c\u6211\u5e0c\u671b\u6709\u4e2a\u7edf\u8ba1\u5b66\u7684\u5e73\u8861\uff0c\u8ba9\u6211\u505a\u7684\u5206\u6790\u66f4\u79d1\u5b66\uff0c\u5982\u679c\u90a3\u6837\u4e5f\u6ca1\u6709\u610f\u4e49\u6211\u5c31\u8ba4\u4e86\u3002\u8bf7\u590f\u6559\u6388\u6307\u6559\uff01<\/p>\n

\u590f\u6559\u6388<\/strong><\/em>\uff1a<\/p>\n

\u5f88\u9ad8\u5174\u4f60\u5f97\u5230\u4e00\u4e9b\u9633\u6027\u7ed3\u679c\u3002<\/p>\n

\u770b\u8fc7\u4f60\u5bc4\u6765\u7684\u6570\u636e\uff0c\u77e5\u9053\u662f\u6709\u5173\u57fa\u56e0\u591a\u6001\u6027\u4e0e\u67d0\u764c\u9884\u540e\u7684\u5173\u7cfb\u3002\u75c5\u4f8b\u6570\u5e94\u8be5\u662f\u6bd4\u8f83\u591a\u7684\uff08\u5f53\u7136\u8fd8\u53ef\u4ee5\u66f4\u591a\u4e9b\uff09\u3002\u5f97\u5230Log Rank P\u503c<0.07\uff0c\u4e0d\u5e94\u8be5\u5931\u671b\u3002\u4f60\u8fd8\u6709\u66f4\u591a\u65b9\u6cd5\u6765\u5168\u9762\u5206\u6790\uff1a<\/p>\n

1\u3001\u57fa\u56e0\u578b\u9891\u7387(Genotype\uff0c TC, CC, T\/C\uff09\u548c\u7b49\u4f4d\u57fa\u56e0\u6bd4\u7387\uff08Alleles,T\uff1aC)\u90fd\u53ef\u4ee5\u7528\u5361\u65b9\u5206\u6790\u3002\uff08\u4f5c\u57fa\u56e0\u591a\u6001\u6027\u7684\u6587\u7ae0\u90fd\u7528Hardy-Weinberg equilibrium\uff0c\u8fd9\u4e2a\u6211\u4e0d\u592a\u61c2\uff09\u3002<\/p>\n

2\u3001\u4e94\u5e74\u751f\u5b58\u7387\u6bd4\u8f83\u3002<\/p>\n

3\u3001Cox Regression\u662f\u4e00\u5b9a\u8981\u505a\u7684\u3002\u5f71\u54cd\u751f\u5b58\u7684\u56e0\u7d20\uff08confounders\uff09\u975e\u5e38\u591a\uff0c\u5305\u62ec\u75c5\u7406(TNM\u3001Stage, Differentiation, site, size, etc)\u53ca\u624b\u672f\u3001\u5316\u7597\u7b49\u7b49\u3002\u6216\u8bb8\uff0c\u8be5\u57fa\u56e0\u591a\u6001\u6027\u5728Cox Regression\u5206\u6790\u4e2d\u4e3a\u72ec\u7acb\u5371\u9669\u56e0\u7d20\uff08\u5373P<0.05<\/p>\n

\u4e09\u3001\u56fe\u8868\u9009\u62e9<\/strong><\/p>\n

\u79d1\u7814\u8bba\u6587\u7684\u56fe\u8868\u4e00\u822c\u662f\u91cd\u8981\u7814\u7a76\u7ed3\u679c\u7684\u5c55\u793a\uff0c\u63d2\u56fe\u8d28\u91cf\u7684\u597d\u574f\u5f80\u5f80\u4e5f\u4f1a\u76f4\u63a5\u5f71\u54cd\u7740\u79d1\u7814\u8bba\u6587\u7684\u53d1\u8868\u3002\u8d8a\u6765\u8d8a\u591a\u7684\u7814\u7a76\u8005\u8ba4\u8bc6\u5230\u4e86\u9ad8\u8d28\u91cf\u7684SCI\u8bba\u6587\u63d2\u56fe\u5bf9\u4e8e\u8bba\u6587\u53d1\u8868\u7684\u91cd\u8981\u6027\u3002<\/p>\n

\u4ee5\u4e0b\u5c06\u4ecb\u7ecd\u4e00\u822cSCI\u6742\u5fd7\u5bf9\u63d2\u56fe\u7684\u5404\u79cd\u8981\u6c42\uff0c\u5e76\u8bf4\u660e\u5982\u4f55\u5728\u5b9e\u9645\u79d1\u7814\u5de5\u4f5c\u4e2d\u505a\u597d\u539f\u59cb\u6570\u636e\u548c\u56fe\u7247\u7684\u91c7\u96c6\u5de5\u4f5c\uff0c\u5e0c\u671b\u80fd\u4ece\u6839\u672c\u4e0a\u5e2e\u52a9\u79d1\u7814\u5de5\u4f5c\u8005\u51cf\u5c11\u8fd9\u7c7b\u95ee\u9898\u7684\u53d1\u751f\u3002<\/p>\n

1. SCI\u8bba\u6587\u63d2\u56fe\u4e00\u822c\u8981\u6c42\uff1a<\/p>\n

1) \u5c3a\u5bf8\u7b26\u5408\u6742\u5fd7\u793e\u7684\u8981\u6c42\uff08\u5bbd\u5ea68.3~17.6\u5398\u7c73\uff0c\u9ad8\u5ea6\u4e00\u822c\u4e0d\u8d85\u8fc720\u5398\u7c73\uff09\uff1b<\/p>\n

2) \u5b57\u4f53\u7b26\u5408\u6742\u5fd7\u793e\u7684\u8981\u6c42\uff08Times NewRoman\/Arial\uff09\uff1b<\/p>\n

3) \u540c\u7c7b\u578b\u6587\u5b57\u7684\u5b57\u53f7\u4fdd\u6301\u4e00\u81f4\uff08Fontsize \u2265 8 pt\uff0c\u5b57\u4f53\u592a\u5c0f\u5370\u5237\u7248\u770b\u4e0d\u6e05\u695a\uff09\uff1b<\/p>\n

4) \u7ebf\u6761\u7c97\u7ec6\u4fdd\u6301\u4e00\u81f4\uff08Line weight;0.25~1 pt\uff09\uff1b<\/p>\n

5) \u51c6\u786e\u3001\u6e05\u695a\u3001\u6709\u6761\u7406\u7684\u56fe\u7247\u6807\u8bb0\uff0c\u63d2\u56fe\u4e0a\u6240\u6709\u5143\u7d20\u5bf9\u4f4d\u6574\u9f50\uff1b<\/p>\n

6) \u63d2\u56fe\u5185\u5bb9\u5e94\u5360\u636e\u6574\u5f20\u63d2\u56fe\u768490%\u4ee5\u4e0a\u7a7a\u95f4\uff0c\u56db\u5468\u4e0d\u80fd\u7559\u592a\u591a\u7a7a\u767d\u533a\u57df\uff1b<\/p>\n

7) \u989c\u8272\u6a21\u5f0f\u7b26\u5408\u6742\u5fd7\u793e\u7684\u8981\u6c42\uff08RGB,CMYK\uff09\uff1b<\/p>\n

8) \u56fe\u7247\u5206\u8fa8\u7387\u8d85\u8fc7\u6742\u5fd7\u793e\u7684\u6700\u4f4e\u8981\u6c42\uff08\u5f69\u56fe\u2265 300 dpi\uff1b\u7ebf\u6761\u56fe\u2265 1000 dpi\uff1b\u7070\u5ea6\u56fe\u2265 600 dpi\uff1b\u7ec4\u5408\u56fe\u2265 500 dpi\uff09\uff1b<\/p>\n

9) \u683c\u5f0f\u7b26\u5408\u89c4\u8303\uff08\u4f4d\u56fe\uff0cTIFF\uff0c\u77e2\u91cf\u56fe\uff0cPDF\/EPS\uff09\uff1b<\/p>\n

10) \u5927\u5c0f\u5408\u9002\uff08\u6bcf\u5f20\u63d2\u56fe\u6700\u597d\u4e0d\u8d85\u8fc710M\uff0c\u63a8\u8350\u4fdd\u5b58\u4e3aTIFF\u683c\u5f0f\u5e76\u9009\u62e9LZW\u65e0\u635f\u538b\u7f29\u6a21\u5f0f\uff09\uff1b<\/p>\n

2.\u5982\u4f55\u83b7\u53d6\u9ad8\u8d28\u91cf\u7684\u539f\u59cb\u7d20\u6750\uff1f<\/p>\n

\u5927\u5bb6\u5728\u6536\u96c6\u539f\u59cb\u6570\u636e\u548c\u56fe\u7247\u65f6\uff0c\u5e94\u7279\u522b\u6ce8\u610f\u83b7\u53d6\u9ad8\u8d28\u91cf\u7684\u539f\u59cb\u6587\u4ef6\uff0c\u5e76\u957f\u671f\u4fdd\u5b58\uff081\uff09\u7167\u76f8\u673a\u62cd\u6444\u7c7b\u7167\u7247<\/p>\n

\u62cd\u6444\u65f6\u5e94\u6ce8\u610f\u5982\u4e0b\u8981\u70b9\uff1a<\/p>\n

1) \u6ce8\u610f\u6444\u5165\u53c2\u7167\u7269\u3002\u5982\u9700\u6bd4\u8f83\u62cd\u6444\u7269\u5c3a\u5bf8\u5927\u5c0f\u7684\uff0c\u5e94\u8f85\u4ee5\u94a2\u5c3a\u505a\u53c2\u7167\uff0c\u5982\u80bf\u7624\u4f53\u79ef\u3001\u88f8\u9f20\u5927\u5c0f\u7b49\uff1b<\/p>\n

2) \u80cc\u666f\u5e94\u5c3d\u91cf\u5e72\u51c0\uff0c\u63a8\u8350\u4ee5\u6d45\u84dd\u5e03\u4f5c\u4e3a\u80cc\u666f\uff0c\u6ce8\u610f\u51cf\u5c11\u8840\u6e0d\u53ca\u5176\u4ed6\u6c61\u67d3\u7269\u7684\u5e72\u6270\uff1b<\/p>\n

3) \u4ed4\u7ec6\u68c0\u67e5\u76f8\u673a\u8bbe\u7f6e\uff0c\u5206\u8fa8\u7387\u8d8a\u9ad8\u8d8a\u597d\uff0c\u63a8\u83502560\u00d71920dpi\u53ca\u4ee5\u4e0a\u5206\u8fa8\u7387;<\/p>\n

4) \u5bf9\u7126\u51c6\u786e\uff0c\u4e0d\u8981\u9006\u5149\u62cd\u6444\uff0c\u591a\u62cd\u51e0\u5f20\uff1b\u53ca\u65f6\u68c0\u67e5\u6548\u679c\u5e76\u6311\u9009\u53ef\u7528\u7684\uff0c\u6b63\u786e\u547d\u540d\uff0c\u5e76\u5c06\u539f\u59cb\u7167\u7247\u957f\u671f\u4fdd\u5b58\uff08\u4e0d\u8981\u7528word\u6216ppt\u4fdd\u5b58\uff09\uff1b<\/p>\n

\uff082\uff09\u6761\u5e26\u7c7b\u56fe\u7247<\/p>\n

\u62fc\u56fe\u524d\uff0c\u6761\u5e26\u7c7b\u56fe\u7247\u9700\u8981\u901a\u8fc7\u56fe\u7247\u8f6f\u4ef6\u8fdb\u884c\u88c1\u526a\u548c\u9884\u5904\u7406\uff0c\u5e76\u6dfb\u52a0\u7bad\u5934\u548c\u5206\u5b50\u91cf\u7b49\u6587\u5b57\u8bf4\u660e\u3002\u5e94\u6ce8\u610f\uff1a<\/p>\n

1) \u4fdd\u6301\u51dd\u80f6\u5b8c\u6574\uff1b<\/p>\n

2) \u62cd\u7167\u6216\u626b\u63cf\u65f6\u5e94\u5c3d\u91cf\u8bbe\u7f6e\u8f83\u9ad8\u7684\u5206\u8fa8\u7387\uff0c\u539f\u59cb\u5206\u8fa8\u7387\u4e0d\u4f4e\u4e8e300 dpi\uff0c\u8d8a\u9ad8\u8d8a\u597d\uff0c\u4fdd\u5b58\u4e3aTIFF\u683c\u5f0f\u5907\u7528\u3002<\/p>\n

\uff083\uff09\u663e\u5fae\u955c\u3001\u7535\u955c\u3001\u5171\u805a\u7126\u663e\u5fae\u955c\u56fe\u7247<\/p>\n

\u8fd9\u7c7b\u7167\u7247\u5305\u62ec\u9ed1\u767d\u56fe\u548c\u5f69\u8272\u56fe\u3002\u62fc\u56fe\u524d\uff0c\u5f80\u5f80\u9700\u8981\u9884\u5904\u7406\u6dfb\u52a0\u6807\u5c3a\u548c\u8c03\u6574\u5927\u5c0f\u7b49\u3002<\/p>\n

\u5e94\u6ce8\u610f\u5982\u4e0b\u8981\u70b9\uff1a<\/p>\n

1) \u5c3d\u91cf\u83b7\u53d6\u9ad8\u5206\u8fa8\u7387\u7684\u56fe\u7247\uff0c\u539f\u59cb\u5206\u8fa8\u7387\u4e0d\u4f4e\u4e8e600dpi\uff0c\u8d8a\u9ad8\u8d8a\u597d\uff0c\u4fdd\u5b58\u4e3aTIFF\u683c\u5f0f\u5907\u7528\uff1b<\/p>\n

2) \u6ce8\u610f\u6dfb\u52a0\u6807\u5c3a\uff0c\u81f3\u5c11\u5728\u540c\u6279\u6b21\u3001\u540c\u53c2\u6570\u7684\u7cfb\u5217\u7167\u7247\u4e2d\u7684\u4e00\u5f20\u4e0a\u6dfb\u52a0\uff0c\u5426\u5219\u540e\u671f\u6ca1\u6709\u53c2\u7167\u5c06\u65e0\u6cd5\u5904\u7406\u3002<\/p>\n

\uff084\uff09\u6570\u636e\u56fe\u8868\u7c7b\u7ed3\u679c<\/p>\n

\u4e00\u822c\u7531\u6570\u636e\u5904\u7406\u8f6f\u4ef6\u751f\u6210\uff0c\u5982Excel, Origin, Graphpad, SPSS\u7b49\uff0c\u5c5e\u4e8e\u7ebf\u6761\u56fe\u8303\u7574\uff0c\u8981\u6c42\u5206\u8fa8\u7387\u4e0d\u4f4e\u4e8e1000dpi\uff0c\u6216\u76f4\u63a5\u901a\u8fc7PDF\/EPS\u683c\u5f0f\u6295\u7a3f\uff08\u5982\u6742\u5fd7\u793e\u5141\u8bb8\uff09\u3002<\/p>\n

\u5e94\u6ce8\u610f\u5982\u4e0b\u8981\u70b9\uff1a<\/p>\n

1) \u539f\u59cb\u6570\u636e\u5fc5\u987b\u5b8c\u6574\u3001\u51c6\u786e\uff1b<\/p>\n

2) \u5206\u6790\u4eea\u5668\u8bb0\u5f55\u7684\u6570\u636e\u6700\u597d\u5bfc\u51fa\u4e3aExcel\u683c\u5f0f\uff0c\u4ee5\u4fbf\u7edf\u8ba1\u8f6f\u4ef6\u8bc6\u522b\u548c\u5904\u7406\u3002<\/p>\n

3) \u5c06\u56fe\u8868\u8f6c\u5316\u6210PDF\u683c\u5f0f\uff0c\u5fc5\u8981\u65f6\u53ef\u901a\u8fc7AI\u5bf9PDF\u683c\u5f0f\u56fe\u8868\u8fdb\u884c\u7f16\u8f91\uff1b<\/p>\n

4) \u6240\u6709\u539f\u59cb\u6570\u636e\u548c\u56fe\u8868\uff0c\u7686\u5e94\u957f\u671f\u4fdd\u5b58\uff0c\u5fc5\u8981\u65f6\u6742\u5fd7\u793e\u53ef\u80fd\u4f1a\u8981\u6c42\u63d0\u4f9b\u6570\u636e\u5206\u6790\u7684\u7ed3\u679c\u4e0d\u8981\u622a\u56fe\uff0c\u5c3d\u91cf\u4e0d\u4f7f\u7528\u56fe\u7247\u5f62\u5f0f\u4fdd\u5b58\u7ed3\u679c\uff0c\u4ee5\u514d\u540e\u7eed\u4e0d\u597d\u4fee\u6539\u3002<\/p>\n

\uff085\uff09\u7f16\u8f91\u516c\u53f8\u534f\u52a9\u5904\u7406\u7684\u63d2\u56fe<\/p>\n

\u867d\u7136\u8bba\u6587\u7f16\u8f91\u516c\u53f8\u6709\u534f\u52a9\u5236\u4f5cSCI\u8bba\u6587\u63d2\u56fe\u7684\u670d\u52a1\uff0c\u4f46\u5f88\u591a\u4f5c\u8005\u53ea\u5173\u5fc3\u6700\u7ec8\u7684\u7ed3\u679c\u2014\u2014\u56fe\u7247\u672c\u8eab\uff0c\u5374\u5f80\u5f80\u5ffd\u7565\u4e86\u5904\u7406\u8fc7\u7a0b\u4e2d\u7684\u4ea7\u751f\u7684\u6e90\u6587\u4ef6\u3002<\/p>\n

\u5e94\u6ce8\u610f\u5982\u4e0b\u8981\u70b9\uff1a<\/p>\n

1) \u7ed8\u5236\u7c7b\u63d2\u56fe\uff0c\u8981\u6c42\u63d0\u4f9bPDF\u7248\uff0c\u5fc5\u8981\u65f6\u63d0\u4f9b\u7b26\u5408\u6742\u5fd7\u793e\u8981\u6c42\u7684\u9ad8\u5206\u8fa8\u7387TIFF\u56fe\u7247\uff1b<\/p>\n

2) \u7167\u7247\u7c7b\u63d2\u56fe\uff08\u5982\u62fc\u56fe\u670d\u52a1\uff0c\u58c1\u62a5\u6392\u7248\u7b49\uff09\uff0c\u8981\u6c42\u63d0\u4f9b\u9ad8\u5206\u8fa8\u7387TIFF\u56fe\u7247\uff0c\u5e76\u63d0\u4f9b\u8f6f\u4ef6\u5904\u7406\u8fc7\u7a0b\u4e2d\u7684\u6e90\u6587\u4ef6\uff08\u5982PS\u5904\u7406\u8fc7\u7a0b\u4e2d\u4ea7\u751f\u7684PSD\u6e90\u6587\u4ef6\uff09\uff0c\u4ee5\u4fbf\u540e\u671f\u4fee\u6539\u3002<\/p>\n

\u6700\u540e\u5fc5\u987b\u8981\u5f3a\u8c03\u7684\u662f\uff0c\u5728\u51c6\u5907SCI\u8bba\u6587\u63d2\u56fe\u7684\u6bcf\u4e2a\u73af\u8282\uff0c\u8bf7\u52a1\u5fc5\u9075\u5b88\u79d1\u7814\u9053\u5fb7\u53ca\u51fa\u7248\u4f26\u7406\u7684\u57fa\u672c\u539f\u5219\uff1a\u4e0d\u7be1\u6539\u6570\u636e\u3001\u4e0d\u634f\u9020\u7ed3\u679c\u3001\u4e0d\u4f2a\u9020\u56fe\u7247\uff01<\/p>\n

\u8f6c\u8f7d\u672c\u6587\u8bf7\u8054\u7cfb\u539f\u4f5c\u8005\u83b7\u53d6\u6388\u6743\uff0c\u540c\u65f6\u8bf7\u6ce8\u660e\u672c\u6587\u6765\u81ea\u7f8e\u6377\u767b\u79d1\u5b66\u7f51\u535a\u5ba2\u3002<\/p>\n

\n
<\/section>\n<\/section>\n

\u6765\u6e90\uff1a<\/strong>\u7f8e\u6377\u767b\u79d1\u5b66\u7f51\u535a\u5ba2<\/p>\n

\u8f6c\u8f7d\u7533\u660e\uff1a<\/strong>\u672c\u6b21\u8f6c\u8f7d\u4ec5\u51fa\u4e8e\u54a8\u8baf\u4fe1\u606f\u4f20\u64ad\u9700\u8981\uff0c\u4e0d\u4ee3\u8868\u6211\u5e73\u53f0\u7684\u89c2\u70b9\u7acb\u573a\uff0c\u7248\u6743\u5f52\u539f\u4f5c\u8005\u6240\u6709\uff0c\u5982\u6d89\u4fb5\u6743\uff0c\u8bf7\u8054\u7cfb\u5ba2\u670d\uff0c\u6211\u4eec\u4f1a\u53ca\u65f6\u5904\u7406\u3002<\/p>\n","protected":false},"excerpt":{"rendered":"

\u4e00\u3001\u7814\u7a76\u7ed3\u679c\u6574\u7406 1. \u00a0 \u00a0 \u00a0\u6750\u6599\u4e0e\u65b9\u6cd5 \u5e94\u8be5\u5c5e\u4e8e\u8bba\u6587\u4e2d\u8f83\u5bb9\u6613\u5199\u7684\u90e8\u5206\u3002\u4f46\u5bf9\u4e8e\u5199\u60ef\u4e2d\u6587\u8bba\u6587\u7684\u4f5c\u8005\uff08\u4e2d\u6587\u8bba\u6587\u65b9\u6cd5\u90e8\u5206\u5e38\u5e38\u65e0\u9700\u5b8c\u6574\u53e5\u5b50\u6216\u4e09\u8a00\u4e24\u8bed\uff0c\u65e0\u9700\u53c2\u8003\u6587\u732e\u6216\u5bf9\u65b9\u6cd5\u7684\u8bba\u8bc1\uff09\uff0c\u8fd9\u90e8\u5206\u4e5f\u662f\u5ba1\u7a3f\u4eba\u6700\u5bb9\u6613\u63d0\u51fa\u95ee\u9898\u7684\u90e8\u5206\u3002\u5728\u5b9e\u9a8c … <\/p>\n